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Abstrac[ 

The deltahedral boranes BH 2- (6 < n _< 12) may be regarded as three-dimensional 
delocalized aromatic systems in which surface bonding and core bonding correspond to cr- 
bonding and n-bonding, respectively, in planar polygonal two-dimensional hydrocarbons 
CHn(n-6)+ (n = 5, 6, 7). The two extreme types of topologies which may be used to model 
core bonding in deltahedral boranes are the deltahedral (D) topology based on the 1- 
skeleton of the underlying deltahedron and the complete (K) topology based on the 
corresponding complete graph. Symmetry factoring of generalized graphs represenüng 
the core-bonding interactions in the highly symmetrical octahedral borane BöH62"- and 
icosahedral borane B12H122 leads to methods for separating the effects of core and surface 
bonding in molecular orbital energy parameters. Such analyses of the Hoffmann-Lipscomb 
LCAO-MO extended Hückel computations, the Armstrong-Perkins-Stewart self-con- 
sistent molecular orbital computations, and SCF MO ab initio Guassian 82 computations 
on B6H2- and B12H122 indicate that the approximation of atomic orbitals by a sum of 
Gaussians, as is typical in modem ab initio computation~s, leads to significantly weaker 
apparent core bonding approximated more closely by deltahedral (D)rather than 
complete (K)  topology. Furthermore, the Tlu core orbitals whäch, if pure, would be non- 
bonding in octahedral (D6) core topology for B6 H2- and bonding in icosahedral (Dl2) core 
topology for B12H122, become antibonding through strong core-surface mixing. Because of 
this, the simpler graph-theory derived model for deltahedral boranes using complete (K) 
core bonding topology gives the correct numbers of bonding orbitals even in cases where 
the complete graph K is a poor approximation for the actual core bonding topology. 

1. Introduction 

The concepts of resonance energy and aromaticity as originally arising from 
molecular orbital theory [1-3] and subsequently refined through graph-theorefical 
methods [4-6] are central to the chemical bonding theory of two-dimensional planar 
hydrocarbons and heterocycles. More recently, similar ideas have been shown to be 
applicable to the chemical bonding of the three-dimensional polyhedral boranes B H  2-,, 
(6 < n < 12) [7], in which the boron atoms form the deltahedra with no degree 3 vertices 
depicted in fig. 1. In 1977, we first used qualitaüve graph-theoretical methods to demon- 
strate the analogy between the chemical bonding topology in two-dimensional planar 
aromatic hydrocarbons and that in three-dimensional deltahedral boranes [8]. A similar 
approach was also shown to provide useful information on the structure and bonding of 
diverse tmnsition metal [9-11] and post-transition metal [12,13] clusters with minimal 
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Fig. 1. Deltahedra without degree 3 vertices found in 
the borane anions B H 2- (n = 6, 7, 8, 9, 10, and 12). 

n ~ 

need for computation. More recently, related ideas have been applied to various super- 
conductors [14,15], including the high T copper oxides [15,16]. 

The virtual absence of computation required for implementation of our graph- 
theory derived method for the treatment of the chemical bonding topology in polyhedral 
boranes and metal clusters has facilitated its application to an extensive variety of 
diverse systems. The wide applicability of the graph-theory derived method makes 
of interest its comparison with various other appmaches requiring substantial 
amounts of computation for the treatment of the same systems. The energy parameters 
of the molecular orbitals, both bonding and antibonding, provide a basis for making 
such comparisons, subject to the following limitations: 

(1) Energy parameters of all molecular orbitals, both bonding and antibonding, are 
required for meaningful comparisons to be made, thereby precluding the use of 
essentially all computations published before 1975, which do not provide the 
necessary energy parameters for the unfllled antibonding (virtual) molecular 
orbitals. 
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(2) Such comparisons have been limited to the polyhedral boranes, since the 
presence of d orbitals in transiüon metal valence sheHs has prevented effective 
comparisons for transition metal clusters. 

(3) More detailed and reliable comparisons can be made on systems of high sym- 
metry with fewer distinct molecular orbital energy parameters, i.e. higher average 
moleculax orbital degeneracies. 

Our initial work [17] used the 1962 LCAO-MO extended Hückel computations 
2- Subsequent work [19] has by Hoffmann and Lipscomb [18] on B6H6 z- and BI2Hx2. 

extended this comparison to some less symmetrical deltahedral boranes, as weil as to 
self-consistent but still semiempirical molecular orbital computations by Armstrong, 
Perkins, and Stewart [20]. More recently, in collaboration with Dai and Gimarc [21], we 
have applied this approach to ab initio SCF MO Gaussian 82 computations with an 
STO-3G basis set in order to provide some insight into the effect on the apparent 
chemical bonding topology in deltahedral boranes when atomic orbitals are approximated 
by Gaussians. This paper describes our method for the topological analysis of the results 
from such computations on deltahedral boranes. In this paper, the analysis is limited to 
the regular polyhedral anions B6H~6- and B12H~~, where favorable symmetry allows 
maximum information to be obtained, as noted above. 

2. Topoiogicai background 

Topological ideas can be used to describe the Hückel theory as it has been 
traditionally applied to conventional two-dimensional aromatic systems [22-25], of 
which benzene is generally regarded as the prototype. The overlap of the atomic orbitals 
involved in the delocalized bonding in aromatic systems can be represented by a graph 
in which the vertices correspond to the orbitals and the edges correspond to orbital 
overlaps. The adjacency matrix [26] of such a graph can be defined as follows: 

A . .=0 ,  if i = j ;  (la) 
q 

A.. = 1, if i and j are connected by an edge; (lb) 
q 

A.. = 0, if i a n d j  are not connected by an edge. (lc) 
q 

The eigenvalues of the adjacency matrix are obtained from the foilowing determinantal 
equation: 

lA - x l l  = 0, (2) 

where I is the unit matrix (/~, = 1 and I.. = 0 for i ;~ j).  These topologically derived 
q 

eigenvalues are closely related to the energy levels as determined by the Hückel 
theory [22-25], which uses the secular equation 
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I H  - E S I  = 0. (3) 

In eq. (3), the energy matrix H and the overlap matrix S can be resolved into the unit 
matrix I and the adjacency matrix A as fonows: 

H = c d  + f l A ,  (4a) 

S = I + S A .  (4b) 

The energy levels of the Hückel molecular orbitals (eq. (3)) are thus related to the 
eigenvalues x k of the adjacency matrix A (eq. (2)) by the foUowing equation: 

O~ + X k fl 
Ek - 1 + x k S  ' (5) 

where a is the standard Coulomb integral, assumed to be the same for all atoms, fl is 
the resonance integral, taken to be the same for all bonds, and S is the overlap integral 
between atomic orbitals on neighboring atoms. 

A difficulty in applying eq. (5) is the need to determine the three parameters ct, 
B, and S to relate the eigenvalues x k determined from pure topological consideraüons to 
the corresponding Hückel molecular orbital energies E k. Our qualitative graph-theory 
derived approach considers only the topological contribution to the molecular orbital 
energies, i.e. 

E k = x~,fl, (6) 

so that E k is measureA relative to the center pointct ,  S is taken to be zero, and 
B is an energy unit derivable from experimental data or, in the case of this work, from 
molecular orbital energies computed by some other method. Reduction of eq. (5) to 
eq. (6) by setting S to zero implies that the energies E k are directly proportional to the 
eigenvalues x k of the adjacency matrix. As long as S is zero or positive, positive values 
of xt correspond to bonding orbitals and negative values ofx« correspond to antibonding 
orbitals. In addition, the center point a corresponding to a given computation can be 
calculated ffom the midpoint of all  of the molecular orbital energy parameters (bonding, 
nonbonding, and antibonding) by taking a degeneracy weighted average, i.e. 

~ , g « E k  

a -  ~ ,  (7) 
Eg« 
k 

where g« is the degeneracy of energy level E k and the summation is over al l  orbitals k. 
The two extreme types of skeletal chemical bonding in molecules formed by 

polygonal or polyhedral clusters of atoms including planar aromatic hydrocarbons and 
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polyhedral boranes, as weil as metal clusters, may be called edge-localized and globally 
delocalized [8-11]. An edge-localized polygon or polyhedron has two-electron two- 
center bonds along each edge, and is favored when the number of intemal orbitals from 
each vertex atom matches the degree of the corresponding vertex. A globally de- 
localized polygon or polyhedron has a multicenter bond involving all of the vertex 
atoms; such global delocalization is a feature of fully ammatic systems, whether two- 
dimen~sional such as benzene or three-dimensional such as the deltahedraA borane anions 
BI-l~n- (6 < n < 12). Such delocalization is favored when the numbers of intemal orbitals 
do not match the vertex degrees. Fully globally delocalized polyhedra am deltahedra, 
namely, polyhedra in which all faces are triangles. A distincfive feature of s~~ch delta- 
hedra with n vertices is an n-center core bond in the center of the deltahedron. The four 
valence orbitals of vertex boron atoms in the B H 2- deltahedral borane anions, as weil 

n n 

as those of the vertex carbon atoms in the planar polygonal hydrocarbons CH(n-6)+n 
(n = 5, 6, 7) and the polyhedranes C2, H2, ,, are partitioned into one extemal orbital for 
bonding to hydrogen or another extemal group and three intemal orbitals for the skeletal 
bonding. For the planar polygons CH(n-6)÷n (n = 5, 6, 7), the vertex degrees are all two 
and thus do not match the available three intemal orbitals thereby leading to globally 
delocalized two-dimensional aromatic systems. For the polyhedranes C2, H2n such as 
tetrahedrane (n = 2), cubane (n = 4), and dodecahedrane (n = 10), the vertex degrees are 
all three which match the three available internal orbitals leading to edge-localized 
bonding. For the deltahedral borane anions B H  2-,, (6 < n < 12), the vertex degrees are 
all four or larger and thus do not match the available three internal orbitals thereby 
leading to globaUy delocalized three-dimensional aromatic systems. 

A major achievement of the graph-theory derived approach to the chemical 
bonding topology of globally delocalized systems is the demonstration of the close 
analogy between the bonding in two-dimensional planar aromatic systems such as 
benzene and that in tlaree-dimensional deltahedral boranes and ca_rboranes [8-11]. In 
such a system with n vertices, the three intemal orbitals on each vertex atom am 
partiOoned into two twin intemal orbitals (called tangential in some other methods [27]) 
and a unique intemal orbital (caHed radial in some other methods [27]). Pairwise 
overlap between the 2n twin intemal orbitals is responsible for the formation of the 
polygonal or deltahedral framework and leads to the splitting of these 2n orbitals into 
n bonding and n antibonding orbitals. The magnitude of this splitting is designated as 
2fls, where fls relates to the parameter ]3 in eqs. (4a), (5), and (6). This portion of the 
chemical bonding topology can be described by a disconnected graph G s having 2n 
vertices corresponding to the 2n twin intemal orbitals and n isolated K 2 components; a 
K 2 component has only two verticës joined by a single edge. The dimensionality of this 
bonding of the twin intemal orbitals is one less than the dimensionality of the globally 
delocalized system [11]. Thus, in the case of the two-dimensional planar polygonal 
systems, the pairwise overlap of the 2n twin intemal orbitals leads to the tr-bonding 
network, which may be regarded as a collection of n one-dimensional bonds along the 
perimeter of the polygon involving adjacent pairs of polygonal vertices. The n bonding 
and n antibonding orbitals correspond to the tr-bonding and tr*-antibonding orbitals, 
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respecüvely. In the case of the three-dimensional deltahedral systems, the pairwise 
overlap of the 2n twin intemal orbitals results in bonding over the two-dimensional 
surface of the deltahedron, which may be regarded as topologically homeomorphic [28] 
to the sphere. 

The equal numbers of bonding and antibonding orbitals formed by pairwise 
overlap of the twin intemal orbitals are supplemented by additional bonding and 
antibonding orbitals formed by global mutual overlap of the n unique intemal orbitals. 
This bonding topology can be represented by a graph G in which the vertices corre- 
spond to the vertex atoms of the polygon or deltahedron, or equivalently their unique 
intemal orbitals, and the edges represent pairs of overlapping unique intemal orbitals. 
The relative energies of the additional molecular orbitals arising from such overlap of 
the unique intemal orbitals are determined from the eigenvalues of the adjacency matrix 
A c of the graph G using flor, more specifica~y, fit' as the energy unit (eqs. (4a), (5), 
and (6)). In the case of the two-dimensional aromatic system benzene, the graph G c is 
the C 6 cyclic graph (the 1-skeleton [29] of the hexagon) which has three positive and 
three negative eigenvalues corresponding to the three ~r-bonding and three lr*-anti- 
bonding orbitals, respectively. The spectra of the cyclic graphs C all have odd numbers 
of positive eigenvalues [30], leading to the familiar 4k + 2 (k = integer) zc-electrons [31] 
for planar aromatic hydrocarbons. 

A critical question is the nature of the core bonding graph G c for the deltahedral 
boralles B H  2-. The two limiting possibüities for G are the complete graph K and the 

n c 

deltahedral graph D ,  and the corresponding core bonding topologies can be called the 
complete and deltahedral topologies, respectively. In the complete graph K ,  each 
vertex has an edge going to every other vertex, leading to a total of n(n-1) /2  
edges [32]. For any valüe of n, the complete graph K has only one positive eigenvalue, 
namely, n -  1, and n - 1 negative eigenvalues, namely, -1  each. The deltahedral graph 
D is identical to the 1-skeleton [29] of the deltahedron. Thus, two verüces of D are 
connected by an edge if, and only if, the corresponding vertices of the deltahedron are 
connected by an edge. The graph D for the deltahedra of interest with seven or more 
vertices all have at least three positive eigenvalues. However, in a~ cases there is a 
unique positive eigenvalue which is rauch more positive than any other of the positive 
eigenvalues. This unique positive eigenvalue, conveniently called the principal eigen- 
value, arises from the fuUy symmetric pathway of the symmetry factoring scheme [33] 
üsed to determine the eigenvalues of D ,  namely, the pathway using G components at 
branches from twofold symmetry operations and G components at ~ branches from 
threefold symmetry operations. The molecular orbital corresponding to the principal 
eigenvalue of G may be caUed the principal core orbital. Since deltahedral boranes of 
the stoichiometry B H  2- have 2n + 2 skeletal electrons, of which 2n are used for the 
surface bonding, there are only two skeletal electrons available for core bonding, 
corresponding to a single core bonding molecular orbital and a single positive eigen- 
value for G c. Thus, deltahedral boranes are three-dimensional aromatic systems with 
4k + 2 = 2 core bonding electrons where k = 0, analogous to the 4k + 2 lr-electrons 
where k = 0 (C3H~), 1 (C5H ~, C6H 6, C7H~) or 2 (CsH2-) for planar two-dimensional 
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aromafic systems. Furthermore, only if Ge is taken to be the corresponding complete 
graph K will the simple model given above for globaUy delocalized deltahedra give the 
correct number of skeletal electrons in all cases, namely, 2 n + 2 skeletal electrons for 
6 < n < 12. Such a model with complete core bonding topology is the basis for the graph- 
theory derived model for the chemical bonding topology of deltahedral boranes and 
metal clusters discussecl in previous papers [8-11 ]. However, deltahedral core bonding 
topology can also account for the observed 2n + 2 skeletal electrons in the B H E- 

rl t l  

deltahedral boranes if there is a mechanism for raising the energies of all the core 
molecular orbitals other than the principal core orbital to antibonding energy levels. 
This possibility was already indicated in the original graph-theoretical analysis [17] of 
the 3n Hoffmann-Lipscomb LCAO-MO extended Hückel computations [18] on icosa- 
hedral B12Hl~, which showed that four core orbitals would be bonding orbitals except 
for core-surface orbital mixing which raises the energies of three of these four core 
orbitals to antibonding levels, leaving only the principal core orbital as a bonding core 
orbital. 

The distinction between complete (K)  and deltahedral (D) core bonding 
topology is most clearly explained for octahedral B6H6 z-. Among the fifteen pairs of six 
vertices in an octahedron (D 6 graph), twelve pairs correspond to edges of the octahedron 
(cis interactions), and the remaining three pairs correspond to antipodal vertices related 
by the inversion center and not connected by an edge (trans interactions). However, all 
of the fifteen pairs of six vertices in a complete K 6 graph correspond to edges of equal 
weight. In an octahedral array of six points, a parameter t can be defined as the ratio of 
the trans interactions to the cis interactions. This parameter t is 0 for the pure octahedral 
topology (D6) and 1 for pure complete topology (K6). Values of t between 0 and 1 can 
be used to measure gradations of topologies between D 6 and K 6, corresponding to the 
weighting of edges representing trans interactions relative to those representing cis 
interactions in the underlying graph. In group-theoretical terms, pure complete core 
bonding topology (i.e. t = 1) uses the symmetric group [34] 56 with 720 operaüons (i.e. 
the automorphism group of the complete graph K 6) rather than its subgroup O h with 48 
operations (i.e. the point group of the octahedron) to represent the symmetry of the core 
bonding manifold in B6H62-. The actual O h rather than 56 symmetry of these systems will 
result in partial removal of the fivefold degeneracy of the core antibonding orbitals 
implied by the complete core bonding topology. The value of the parameter t corre- 
sponding to a given computation on octahedral B6H6 z- can be estimated from the energy 
parameters computed for the A. and E core molecular orbitals [17,19]• The core 

• l g  . g 

bonding topology correspondmg to a gwen computatlon on BöH6 z- can thus be deter- 
mined. 

These ideas concerning the skeletal bonding in deltahedral borane anions can be 
related to tensor surface harmonic theory as developed by Stone [35] and elaborated by 
Mingos and Johnston [36]. The n core orbitals may be described by the scalar spherical 
harmonics, which for deltahedra having n vertices correspond successively to the single 
S a, the three pa, the five Da, the seven F a orbitals, etc., of increasing energy and 
nodality. The surface orbitals may be described by the vector spherical harmonics, 
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which for deltahedra having n vertices correspond successively to three P~, five D n, 
seven F n bonding/antibonding orbital pairs, etc., of increasing energy and nodality. This 
relates to the foHowing aspects of the graph-theory derived model for the skeletal 
bonding in deltahedral boranes: 

(1) The principal core orbital corresponds to the S a orbital in tensor surface 
- -  $ 

hannonic theory. Since there are no S n or S n surface orbitals, the principal core 
orbital (S  a) cannot mix with any of ~~he su~face orbitals, in accord with ideas 
discussed above. Thus, the principal core orbital cannot be made anübonding 
through core-surface mixing. 

(2) The three core orbitals of lowest energy other than the principal core orbital (S~) 
correspond to Pa s orbitals in tensor surface harmonic theory. These orbitals 
correspond to the three most positive eigenvalues other than the principal eigen- 
value of the corresponding deltahedra. The pa  core orbitals mix with the p,r 

s p 

surface orbitals so that the pa  core orbitals become anübonding with corre- 
s 

sponding lowering of the energies of the Pn surface orbitals below the energies 
of the other surface bonding orbitals. Thus,Pin computations of molecular orbital 
energies Of the B H  2-,, deltahedral borane anions, the lowest lying molecular 
orbital is the principal core orbital (Ss a) and the next lowest lying orbitals 
correspond to the three Pn surface orbitals, which will be degenerate in the case 
of octahedral B6H2- and icosahedral B12H12~ but not in the case of the less 
symmetrical deltahedra. 

In order to relate a given computation on a deltahedral borane to topological 
models for its chemical bonding, all of its molecular orbital energy parameters are 
required, including those for the unfilled antibonding (virtual) orbitals, thereby pre- 
cluding such an analysis for many of the published computations [37-41]. From such 
information, the first step is to calculate a, the energy "zero point" of eqs. (4a) and (5). 
The value of a corresponding to a given complete set of molecular orbital energy 
parameters is best determined by taking the degeneracy weighted average of the energy 
parameters for all of the molecular orbitals, as indicated in eq. (7). Next, the surface 
energy unit fls can be estimated as the degeneracy weighted average distance of the pure 
surface orbitals from the energy zero point a. At this stage, sampling error is unavoid- 
ably introduced since the energy parameters of only the pure surface orbitals can be 
included in this average. The other surface orbitals must be excluded from this average 
since their energy parameters are distorted by substantial mixing with the core and 
extemal orbitals belonging to the same irreducible representations. The sign of the 
resulting fls is the same as the sign of the bonding pure surface orbitals. 

Further analysis of the computed molecular orbital energy parameters either 
requires some special symmetry such as that found in octahedral B+H6 2- or icosahedral 
B12Ht2~, or some further assumptions conceming the chemical bonding topology for the 
less symmetrical deltahedra. Only the former situation is discussed in this paper. In the 
cases of the systems with special symmetry, the core energy units/~c and the nonadjacent 
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atom unique intena~ orbital interactions (i.e. t in B6H62- and m in B12H2~) can be esti- 
mated from the energy pararneters of the principal core orbital and the other core orbital 
not mixing with surface orbitals. This method is subject to possible errors arising from 
core-external orbital interactions. However, a comparison of the Hoffmann-Lipscomb 
"3n", "4n", and "5n" computations [ 18] suggests that these core-extemal interactions 
are not large enough to cause serious errors. 

3. Methods 

Consider an octahedrally weighted K 6 complete graph having 12 edges of unit 
weight corresponding to the octahedron edges (cis interactions) and the remaining 3 
edges of weight t corresponding to the three octahedron antipodal vertex pairs. The 
spectrum of this graph can be determined by symmetry factoring [33] using a threefold 
axis (fig. 2). The symmetric branch (A in fig. 2) gives the eigenvalue 4 + t correspon- 
ding to the A~g principal core molecular orbital, as weil as one of the - t  eigenvalues of 

Octohedrally C 3 E 
wei(jhted K 6 : / '- ~ : = 
12 edqe weiqhts ÷ I l E g : - 2 ÷ t,-2 + t 
B ed(]e weiqh~+t A Tlu:- t , - t  

Alg; 4e t  
Tlu:-t  

Fig. 2. Symmetry factoring scheme for an octahedral]y weighted K 6 
graph using ä threefold axis (C3) leading to A and E branches [33]. 

the triply degenerate 7"1ù core molecular orbital. The doubly degenerate E branch 
(fig. 2) gives the other two - t  eigenvalues of the triply degenerate Tlù core molecular 
orbital, as weil as the two - 2  + t eigenvalues of the doubly degenerate E core g 
molecular orbital. Note that any positive value of t (up to +2) is sufficient to lead to only 
one positive eigenvalue, namely the 4 + t eigenvalue of the A. orbital, and five negative 

• l g  

eigenv'~ues, namely the - t  eigenvalues of the tnply degenerate 7"1ù orb~tals and 
the -2  + t eigenvalues of the doubly degenerate E orbital. This indicates that any 
positive trans interaction in an octahedron gives thegsame distribution of bonding and 
antibonding orbitals, namely 1 and 5, respectively, as an unweighted (i.e. t = 1) K 6 
graph. Thus, for octahedral boranes the numbers of bonding and anübonding orbitals are 
insensitive to the value taken for t. Note also that setüng t = 0 leads to the spectrum of 
the octahedron (+4, 0, 0, 0, -2 ,  -2)  which is the D 6 graph, whereas setting t = 1 leads 
to the spectrum of the K 6 complete graph (+5, -1,  -1,  -1,  -1,  -1). 

This symmetry factoring procedure indicates that in the absence of core-surface 
and core-extemal orbital mixing, the energy parameters of the octahedral core orbitals 
in BöH2- relative to ct are determined by the equations 
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E(A1g) c = (4 + t)/3 c, (8a) 

E(TI~) e = -t/3 e, (8b) 

E(Eg) c = (-2 + t)fl~, (8c) 

where fl• is the core energy unit and t is the ratio of trans to cis interactions. The coœ 
octahedral orbitals not subject to core-surface mixing are the Alg principal core orbital 
and the doubly degenerate E antibonding core orbitals. Furthermore, a comparison of  

g 

the molecular orbital energy parameters from the 3n, 4n, and 5n computations on B6H62- 
by Hoffmann and Lipscomb [18] suggests that core-extemal  orbital mixing, unlike 
core-surface orbital mixing, is relatively minor in this system. Substitution of  the 
energy parameters of the A. core orbital, readily recognized as by far the most strongly 

• I g  

bondmg molecular orbital, and an antibonding E orbital into eqs. (8a) and (8c), 
respectively, leads to two equations which can be s~olved for the two unknowns t and 
B .  In cases where the two sets of antibonding E orbitals differ significantly in energy, 
o~ly one of the two possible choices, namely the~less antibonding E orbitaA, was found 
to give a physically reasonable positive value of t between 0 and 1. "l~e E orbital giving 

g 
such a positive value of t was therefore chosen to be the core orbital, leaving the more 
strongly antibonding E orbital to be an antibonding extemal orbital. The values of t and 
B so obtained by solwng eqs. (8a) and (8c) can be substituted into eq. (8b) to give a 
hypothetical value for E(T~u) c in the absence of core-surface mixing. Comparison of  
this value with the computed value for the TIù core orbital gives a parameter AE(TI~), 
which can be taken to measure the extent of core-surface mixing. 

Related methods can be used to compare the computed octahedral surface orbital 
energy parameters with those arising from the graph-theory derived method. In this 
case, the ideal surface orbital energy parameters for the octahedron based on S 6 sym- 
metry am determined by the equations 

e t : o )  _- E(T,~) = -~«  

(9a) 

(9b) 

where/3 s is the surface energy unit. Reduction of the effective symmetry from the S 6 
automorphism group of the K 6 graph to the actual O h point group of a regular octa- 
hedron will make E(T2o ) no longer equal to E(T. ) and E(T~ ) no longer equal to 

l g  z g  

E(TIù) « On the basis of eqs. (9a) and (9b), the following appropdately weighted mean 
of  the energy parameters of the pure surface orbitals T2g, T2~, and Tig can be used to 
determine/3." 

/~ = 1/2[-1/2(E(~ù) + e(T,g)) + E(T2g)]. (10) 

The energy parameter E(Tlu)s is not included in this mean because of the uncertainty 
in the core-surface mixing parameter ~,E(Tlu ), obtained as outlined above, which must  
be subtracted from the value of E(T~ù) s obtained from the actual computation. 
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A similar approach can be used for the treatment of icosahedral boranes. Thus, 
consider an icosahedraUy weighted K~2 complete graph having 30 edges of unit weight 
corresponding to the icosahedron edges, 30 edges of weight m corresponding to the 
meta hqteraction of nonadjacent, nonantipodal vertex pairs, and 6 edges of weight p 
corresponding to the para interaction of the 6 icosahedron antipodal pairs. The spectrum 
of  this graph can be determined by symmetry factoring [33] using first a threefold axis 
and then a twofold axis (fig. 3). The fially symmetric branch (AG) gives the eigenvalue 

Icosahedrally C3 E ~ , ~  C2 U 

30 e~e welqhts + | A G 
30 edqe weiqhts+m 

6 edge weights+ p 

2(. .) 
Hg:-l-m+p 

B (four times) 

Ag: 5 +Sm+p Tlu: v~(I-m)-p 
Hg :- I-m+ p T2u:-,v~(]-m)-p 

"2"  4, 
Tlu:vrs(I-m)-p 
T2ù:-.,/5(1- m)-p 
(both al~)eor twice) 

Fig. 3. Symmetry factoring scheme for an icosahedrally weighted/(12 
graph using fast a threefold axis (C3) leading to A and E bralaches, 
followed by a twofold axis (C2) leading to G and U branches [33]. 

5 + 5m + p corresponding to the A principal core molecular orbital, as weU as one of 
the - 1 - m + p eigenvalues of th~ quintuply degenerate H core molecular orbitals. 
The remaining four - 1 - m + p  eigenvalues of the quintuply degenerate H core 
molecular orbitals arise from the two isolated vertices of the doubly degenerate EG 
branch. The AU branch and the doubly degenemte EU branch generate the same 
quadratic equation, whose roots give the eigenvalues of the triply degenemte Tlù and TEù 
core molecular orbitals. Note that the Tlù core molecular orbital has a posiüve eigen- 
value unless p > ,/5(1 - m). Thus, with most likely values of the edge weights m and 
p, the icosahedrally weighted Klz graph (fig. 3) has four positive eigenvalues, namely 
the A and triply degenerate T. orbitals, rather than only the single positive eigenvalue g lu 
characterisfic of the unweighted K12 graph. Note also that setüng m = 0 and p = 0 gives 
the spectrum of the icosahedron (+5, +45 three times, -1  five times, -~/5 three times), 
whereas setting m = 1 and p = 1 gives the spectrum of the Kx2 complete graph (+ 11, -1 
eleven times). 

This symmetry factoring procedure indicates that in the absence of  core-surface 
and core-extemal orbital mixing, the energy parameters of the icosahedral core orbitals 
in B12H~22 relative to a are determined by the equations 
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E(A,g) = (5 + 5m + P)flc" 

E(TIù) c = [45(1 - m) - p]f l« 

E ( H  ) = ( - 1 -  m + p ) # «  

E(T2u) = [-'45(1 - m) - P]flc' 

(lla) 

( l lb)  

(1 Ic) 

(11d) 

where flc is the core orbital energy unit, m is the ratio of the meta (nonadjacent, 
nonantipodal) to ortho (adjacent) interacüons, and p is the ratio of para (antipodal) to 
ortho intëractions. The only core icosahedral orbitals not subject to core-surface mixing 
are the A principal core orbitals and the triply degenerate T2u anübonding core orbitals. 
This leavges only the two eqs. (1.la) and ( l ld)  for the energy parameters of the Ag and 
T2u core orbitals, respecüvely, to determine the three unknowns m, p, and fl¢. The system 
is therefore underdetermined by one relationship so that an addiüonal relationship 
between m, p, and/or flc must be assumed before the necessary parameters can be 
extracted from the computed energy parameters. The arbitrary auxiliary assumption [19] 

m -- 2p (12) 

is therefore introduced, allowing the following two equations for flc and m to be derived 
from eqs. (11a), (11d), and (12): 

B~ = E(A 1 g ) c  - -  (3.168)E(T2u )c, (13a) 
12.083 

rn= 2 p =  -~1 (E(A__~~g)c 53 
~, 3c 

(13b) 

Analysis of the 3n computations by Hoffmann and Lipscomb [18] suggests that the 
values of m and flc obtained from a given set of computed molecular orbital energy 
parameters are relatively insensitive to the assumed relationship between m and p in the 
ränge 0 < p < m. After determining m and flc by eqs. (13a) and (13b), eqs. (1 lb) and 
(1 Ic) can be used to calculate hypothetical values for E(T. ) and E(H ) in the absence 

~uc gc 
of core-surface mixing. Comparison of these values with the computed energy para- 
meters for the T.~u and H_g core orbitals gives parameters AE(T) and AE(H)  measuri~g 
the extent of core-surlace mixing. 

An approach similar to that used for the octahedral B6H62- can be used to esümate 
the surface orbital energy unit fls for the icosahedral B12Hx2 corresponding to a given set 
of computed molecular orbital energy parameters. The ideal surface orbital energy 
parämeters for the icosahedron based on ,512 symmetry are determined by the equaüons 
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e ( G )  = e ( H ) ,  = e t ,  o), = ~ ,  

e ( G )  = e ( H )  = e (E~)  = - f ) .  

(14a) 

(14b) 

Reduction of the effective symmetry from the 512 automorpbism group of the Kl2 graph 
to the actual /h point group of the regular icosahedron destroys the equalifies between 
the molectflar orbital energy parameters in eqs. (14a) and (14b). On the basis of these 
equations, the following degeneracy weighted mean of the energy parameters of the 
pure bonding surface orbital G of degeneracy 4 and the pure anübonding sufface 
orbitals G ,  H ,  and Tig of degeneracies 4, 5, and 3, respectively, can be used to 

• g u 

determme fls: 

fls = 1/2[-1/12(4E(Gg) + 5E(Hu) + 3E(Tlg)) + E(G)] .  (15) 

As in the case of the analogous calculation for the B6H6 2- octahedron, the energy 
parameters E(H ) and E(T. ) are not included in the mean owing to uncertainties in 

g s  l u s  
esümaüng the core-surface mixing corrections AE(Hù) and AE(~, ). 

These methods have been used to analyze ~the molecu]är orbital energy 
parameters arising from several different types of computations on octahedral B6H6 2- 
(table 1) and icosahedral B12H~~ (table 2). The simplest such computations are the 
Hoffmann-Lipscomb LCAO-MO extended Hückel computations, which have been 
perfomed using only the 3n intemal orbitals on the n vertex boron atoms (HL3n), using 
only the 4n boron valence orbitals (HL4n), and using the fu11 5n valence orbital set 
consisting of 4 orbitals (sp 3) on each boron atom and the ls orbital on each hydmgen 
atom. The molecular orbital energy parameters from these computations are given in 
dimensionless quantities ( a  - E«)/(K - Et), where K is the pmportionality constant 
between resonance integral fl and overlap S: flrs = KSrs• Comparison of these three sets 
of computations allows the examination of the effects of core-extemal orbital mixing 
since the extemal and hydrogen orbitals are deleted completely from the HL3 n basis set. 
The Armstrong-Perkins-Stewart self-consistent field molecular orbital (SCFMO) 
computations (APS), which give molecular orbital energy parameters in electron volts, 
introduce itemtive methods [42] and use numerical integration of the Slater orbitals of 
the standard type 

zfa N r"- 'exp(-ar~lao)Y, .  (O ~ , 0#). (16) 

The Gimarc-Dai SCF MO Gaussian 82 computations with an STO-3G basis set 
represent an example of a simple ab initio computation where the Slater orbitals (e.g• 
eq. (16)) are approximated by a sum of Gaussians of the form exp(-ctr  2) to facilitate 
evaluation of the necessary integrals [43]• The Gimarc-Dai computations give molecu- 
lar orbital energy parameters in Ha~rees. The values of ct, fit' flc/fls" Bs' t, and AE(Tlu) 
obtained from the analysis of the molecular orbital energy parameters from these 
computaüons for octahedral BöH2- are listed in table 1. Similarly, the values of 
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Table 1 

Analysis of eomputations on octahedral BöH 2- 

Hoffmarm-Lipscomb 
extended Hllekel 

eomputations 

3n 4n 5n 

Annstrong-P¢rkins-S mwart 
self-consisteaat MO 

computations* 

SCF MO ab initio 
Gaussian 82 
computations* 

Core orbitals 

Als 2.969 3.066 3.210 -50.3 -1.126 
T~u -0.829 -0.831 -0.844 13.8 0.596 
(T~u adjusted) (-0.401) (-0.434) (-0.478) (7.5) (0.062) 
E -0.884 -0.887 -0.888 13.6 0.470 g 
Surface orbitals 

Tlu 1.023 1.130 1.433 -26.1 -0.848 
f i t  adjusted) (0.595) (0.733) (1.067) (-18.6) (-0.314) 
T2g 0.493 0.493 0.493 -11.1 -0.486 
T2u -0.416 -0.416 -0.416 9.8 0.198 
Tig -0.671 -0.671 -0.671 11.7 0.548 

Derived parameters 

a 0 0 0 7.2 0.675 
Be 0.642 0.658 0.683 -10.7 -0.266 
B, 0.527 0.527 0.527 -8.1 -0.429 
Bclfl, 1.218 1.249 1.296 1.32 0.620 
t 0.625 0.660 0.700 0.700 0.233 
AE(T~u) 0.428 0.397 0.366 -6.3 -0.534 

*Relaüve to a as given. 

B fl~' flelfls ' ~s' m, AE(Tlu) and AE(Tlg ) obtained for icosahedral B12H2 ] are listed 
in table 2. 

4. Conclusions 

The information summarized in tables 1 and 2 indicates the foUowing features of  
the various computations on octat~dral BöH ~- and icosahedral B12H12~: 

(1) The Hoffmann-Lipscomb LCAO-MO extended Hückel computaüons (HLSn) 
[18] and the Armstrong-Perkäns-Stewart self-consistent molecular orbital com- 
putaüons (APS) [20], both of  which are derived directly from Slater-type orbitals, 
give very similar values of  flc/fls and t, particularly in the case of  octahedral 
BöH~-. 
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TaUe 2 

An~ysis of compumtionsonieosaheclr~ B12H~~ 

Hoffmarm-Lipscomb 
extencled Hückel 

computations 

3n 4n 5n 

Armstrong-Perkins-S tewart 
self-consistent MO 

computations* 

SCF MO ab inatio 
Gaussian 82 
computations* 

Core orbitals 

Alg 4.163 4.293 4.469 -70.6 -1.184 

Tlu -0.773 -0.827 -0.860 13.5 0.407 
(Tlu adjusted) (0.654) (0.642) (0.620) (-8.8) (-0.441) 

H -0.856 -0.862 -0.873 13.7 0.511 g 

(Hg adjusted) (-0.693) (-0.711) (-0.734) (11_5) (0.227) 

T2u -0.886 -0.886 -0.887 13.1 0.459 
Surface orbitals 

TIu 1.907 1.990 2.370 -40.6 2-0.998 

(T~u adjusted) (0.480) (0.521) (0.890) (-18.3) (-0.150) 

H 0.984 1.107 1.358 -21.7 -0.810 
g~ 

(Hg adjusted) (0.815) (0.956) (1.219) (-19.5) (-0.526) 

G 0.518 0.518 0.518 -4.7 -0.526 

G -0.471 -0.471 -0.471 9.6 0.156 g 

H -0.678 -0.678 -0.678 11.3 0.445 

Tig -0.782 -0.782 -0.782 11.8 0.682 

Derived parameters 

a 0 0 0 5.1 0.547 

Be 0.577 0.588 0.602 -9.3 -0.218 

B. 0.577 0.577 0.577 -7.8 -0.467 

Bc//3 s 1.000 1.019 1.043 1.192 0.466 

m(= 2p) 0.402 0.418 0.441 0.471 0.078 

p 0.201 0.209 0.220 0.235 0.039 

AE(Tlu) 1.429 1.469 1.480 -22_3 -0.848 

AE(Hg) 0.163 0.151 0.139 -2.2 -0.284 

*Relative to a as given. 

(2) The SCF MO ab initio Gaussian 82 computaüons (GD), which approximate 
Slater-type orbitals with a sum of Gaussians, give much lower values of both 
B¢/fls and the nonadjacent core orbital interaction parameters (t for BöH62- and m 
for B12H22) than the HL5n and APS computations using Slater orbitals. This 
indicates that the representation of Slater-type orbitals by a sum of Gaussians, as 
is typical in modern ab initio computations, leads to significantly weaker 
apparent core bonding, approximated more closely by deltahedral (D)  mther 
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(3) 

than complete (K) topology, probably because Gaussian functions of the type 
exp(-ctr 2) fall oft more rapidly at longer distances than Slater functions of the 
type exp(-~'r). 

The Tlu orbitals which, if pure, would be non-bonding in octahedral (D 6) core 
topology for BöH6 2- and bonding in icosahedral (Dx2) tore topology for B12HZ ~, 
become antibonding through strong core-surface m ixing [ 17, 19,21 ]. Because of 
this, the simpler graph-theory derived model [8-11], using complete core bond- 
ing topology where G c = K ,  gives the correct numbers of bonding and anti- 
bonding orbitals even though the complete graph K is a poor approximation of 
the actual G corresponding to the computations using Gaussian orbitals. 
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