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Abstract

The deltahedral boranes B HZ_ (6 £ n < 12) may be regarded as three-dimensional
delocalized aromatic systems in which surface bonding and core bonding correspond to o-
bonding and 7z-bonding, respectively, in planar polygonal two-dimensional hydrocarbons
C H('l ©* (n=5, 6, 7). The two extreme types of topologies which may be used to model
core bondmg in deltahedral boranes are the deltahedral (D) topology based on the 1-
skeleton of the underlying deltahedron and the complete (Kn) topology based on the
corresponding complete graph. Symmetry factoring of generalized graphs representing
the core-bonding interactions in the highly symmetrical octahedral borane B H?" and
icosahedral borane B H22" leads to methods for separating the effects of core and surface
bonding in molecular orbntal energy parameters. Such analyses of the Hoffmann-Lipscomb
LCAO-MO extended Hiickel computations, the Armstrong-—Perkins—Stewart self-con-
sistent molecular orbxtal computations, and SCF MO ab initio Guassian 82 computations
on B H and Bl H 12 indicate that the approximation of atomic orbitals by a sum of
Gaussxans as is typ1cal in modern ab initio computations, leads to significantly weaker
apparent core bonding approximated more closely by deltahedral (D ) rather than
complete (K ) topology. Furthermore, the T core orbitals which, if pure, would be non-
bonding in octahedral (D ) core topology for B H and bonding in icosahedral (D ) core
topology for B12 12 become antibonding through strong core—surface mixing. Because of
this, the simpler graph-theory derived model for deltahedral boranes using complete (K )
core bonding topology gives the correct numbers of bonding orbitals even in cases where
the complete graph K is a poor approximation for the actual core bonding topology.

1. Introduction

The concepts of resonance energy and aromaticity as originally arising from
molecular orbital theory [1-3] and subsequently refined through graph-theoretical
methods [4-6] are central to the chemical bonding theory of two-dimensional planar
hydrocarbons and heterocycles. More recently, similar ideas have been shown to be
applicable to the chemical bonding of the three-dimensional polyhedral boranes BnHz‘
(6 < n<12) [7], in which the boron atoms form the deltahedra with no degree 3 vertices
depicted in fig. 1. In 1977, we first used qualitative graph-theoretical methods to demon-
strate the analogy between the chemical bonding topology in two-dimensional planar
aromatic hydrocarbons and that in three-dimensional deltahedral boranes [8]. A similar
approach was also shown to provide useful information on the structure and bonding of
diverse transition metal [9-11] and post-transition metal [12,13] clusters with minimal
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need for computation. More recently, related ideas have been applied to various super-
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Fig. 1. Deltahedra without degree 3 vertices found in
the borane anions B H>™ (n = 6,7, 8,9, 10, and 12).

conductors [14,15], including the high Tc copper oxides [15,16].

The virtual absence of computation required for implementation of our graph-
theory derived method for the treatment of the chemical bonding topology in polyhedral
boranes and metal clusters has facilitated its application to an extensive variety of
diverse systems. The wide applicability of the graph-theory derived method makes
of interest its comparison with various other approaches requiring substantial
amounts of computation for the treatment of the same systems. The energy parameters
of the molecular orbitals, both bonding and antibonding, provide a basis for making

such comparisons, subject to the following limitations:

¢))

Energy parameters of all molecular orbitals, both bonding and antibonding, are
required for meaningful comparisons to be made, thereby precluding the use of
essentially all computations published before 1975, which do not provide the
necessary energy parameters for the unfilled antibonding (virtual) molecular
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(2) Such comparisons have been limited to the polyhedral boranes, since the
presence of d orbitals in transition metal valence shells has prevented effective
comparisons for transition metal clusters.

(3) More detailed and reliable comparisons can be made on systems of high sym-
metry with fewer distinct molecular orbital energy parameters, i.e. higher average
molecular orbital degeneracies.

Our initial work [17] used the 1962 LCAO-MO extended Hiickel computations
by Hoffmann and Lipscomb [18) on B HZ™ and B ,HZ;. Subsequent work [19] has
extended this comparison to some less symmetrical deltahedral boranes, as well as to
self-consistent but still semiempirical molecular orbital computations by Armstrong,
Perkins, and Stewart {20]. More recently, in collaboration with Dai and Gimarc [21], we
have applied this approach to ab initio SCF MO Gaussian 82 computations with an
STO-3G basis set in order to provide some insight into the effect on the apparent
chemical bonding topology in deltahedral boranes when atomic orbitals are approximated
by Gaussians. This paper describes our method for the topological analysis of the results
from such computations on deltahedral boranes. In this paper, the analysis is limited to
the regular polyhedral anions B .HZ™ and B H’;, where favorable symmetry allows

1277127
maximum information to be obtained, as noted above.

2. Topological background

Topological ideas can be used to describe the Hiickel theory as it has been
traditionally applied to conventional two-dimensional aromatic systems [22-25], of
which benzene is generally regarded as the prototype. The overlap of the atomic orbitals
involved in the delocalized bonding in aromatic systems can be represented by a graph
in which the vertices correspond to the orbitals and the edges correspond to orbital
overlaps. The adjacency matrix [26] of such a graph can be defined as follows:

A;=0, if i=j; (1a)
A;=1, if iand jare connected by an edge; (1b)
A;=0, ifiand;arenot connected by an edge. (1c)

The eigenvalues of the adjacency matrix are obtained from the following determinantal
equation:

A —xIl =0, 2)
where [ is the unit matrix (I, = 1 and I, = 0 for i # j). These topologically derived

eigenvalues are closely related to the energy levels as determined by the Hiickel
theory [22-25], which uses the secular equation
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IH-ESI=0. 3

In eq. (3), the energy matrix H and the overlap matrix S can be resolved into the unit
matrix I and the adjacency matrix A as follows:
H = ol + A, (4a)
S=1I+5A. (4b)

The energy levels of the Hiickel molecular orbitals (eq. (3)) are thus related to the
eigenvalues x, of the adjacency matrix 4 (eq. (2)) by the following equation:

a+xkﬁ

) 5
1+x, 8 %)

k::

where a is the standard Coulomb integral, assumed to be the same for all atoms, f is
the resonance integral, taken to be the same for all bonds, and S is the overlap integral
between atomic orbitals on neighboring atoms.

A difficulty in applying eq. (5) is the need to determine the three parameters «,
B, and S to relate the eigenvalues x, determined from pure topological considerations to
the corresponding Hiickel molecular orbital energies £,. Our qualitative graph-theory
derived approach considers only the topological contribution to the molecular orbital
energies, i.e.

E =xp, )
so that E is measured relative to the center point ¢, S is taken to be zero, and
B is an energy unit derivable from experimental data or, in the case of this work, from
molecular orbital energies computed by some other method. Reduction of eq. (5) to
eq. (6) by setting S to zero implies that the energies E, are directly proportional to the
eigenvalues x of the adjacency matrix. As long as S is zero or positive, positive values
of x, correspond to bonding orbitals and negative values of x, correspond to antibonding
orbitals. In addition, the center point o corresponding to a given computation can be
calculated from the midpoint of all of the molecular orbital energy parameters (bonding,
nonbonding, and antibonding) by taking a degeneracy weighted average, i.e.

:;ngk
2 8k ’

k

a=

(7

where g, is the degeneracy of energy level E, and the summation is over all orbitals k.
The two extreme types of skeletal chemical bonding in molecules formed by
polygonal or polyhedral clusters of atoms including planar aromatic hydrocarbons and
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polyhedral boranes, as well as metal clusters, may be called edge-localized and globally
delocalized [8—11]. An edge-localized polygon or polyhedron has two-electron two-
center bonds along each edge, and is favored when the number of internal orbitals from
each vertex atom matches the degree of the corresponding vertex. A globally de-
localized polygon or polyhedron has a multicenter bond involving all of the vertex
atoms; such global delocalization is a feature of fully aromatic systems, whether two-
dimensional such as benzene or three-dimensional such as the deltahedral borane anions
BnH:‘ (6 € n £12). Such delocalization is favored when the numbers of intemnal orbitals
do not match the vertex degrees. Fully globally delocalized polyhedra are deltahedra,
namely, polyhedra in which all faces are triangles. A distinctive feature of sych delta-
hedra with n vertices is an n-center core bond in the center of the deltahedron. The four
valence orbitals of vertex boron atoms in the B, HZ‘ deltahedral borane anions, as well
as those of the vertex carbon atoms in the planar polygonal hydrocarbons C Hi»-9*
(n =35, 6,7) and the polyhedranes C pH,,s ATE partitioned into one external orbxtal for
bonding to hydrogen or another external group and three internal orbitals for the skeletal
bonding. For the planar polygons C H"~%* (n = 5, 6, 7), the vertex degrees are all two
and thus do not match the available three internal orbitals thereby leading to globally
delocalized two-dimensional aromatic systems. For the polyhedranes C, H, such as
tetrahedrane (n = 2), cubane (n = 4), and dodecahedrane (n = 10), the vertex degrees are
all three which match the three available internal orbitals leading to edge-localized
bonding. For the deltahedral borane anions BnH:’ (6 £ n £ 12), the vertex degrees are
all four or larger and thus do not match the available three intemal orbitals thereby
leading to globally delocalized three-dimensional aromatic systems.

A major achievement of the graph-theory derived approach to the chemical
bonding topology of globally delocalized systems is the demonstration of the close
analogy between the bonding in two-dimensional planar aromatic systems such as
benzene and that in three-dimensional deltahedral boranes and carboranes [8—11]. In
such a system with n vertices, the three internal orbitals on each vertex atom are
partitioned into two twin internal orbitals (called tangential in some other methods [27])
and a unique intemal orbital (called radial in some other methods [27]). Pairwise
overlap between the 2n twin internal orbitals is responsible for the formation of the
polygonal or deltahedral framework and leads to the splitting of these 2n orbitals into
n bonding and n antibonding orbitals. The magnitude of this splitting is designated as
2, where f relates to the parameter f§ in eqgs. (4a), (5), and (6). This portion of the
chemical bondmg topology can be described by a disconnected graph G, having 2n
vertices corresponding to the 2n twin internal orbitals and » isolated K, components, a
K, component has only two vertices joined by a single edge. The dnmensnonahty of this
bondmg of the twin internal orbitals is one less than the dimensionality of the globally
delocalized system [11]. Thus, in the case of the two-dimensional planar polygonal
systems, the pairwise overlap of the 2n twin internal orbitals leads to the o-bonding
network, which may be regarded as a collection of n one-dimensional bonds along the
perimeter of the polygon involving adjacent pairs of polygonal vertices. The n bonding
and n antibonding orbitals correspond to the o-bonding and o*-antibonding orbitals,
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respectively. In the case of the three-dimensional deltahedral systems, the pairwise
overlap of the 2n twin internal orbitals results in bonding over the two-dimensional
surface of the deltahedron, which may be regarded as topologically homeomorphic [28]
to the sphere.

The equal numbers of bonding and antibonding orbitals formed by pairwise
overlap of the twin internal orbitals are supplemented by additional bonding and
antibonding orbitals formed by global mutual overlap of the n unique internal orbitals.
This bonding topology can be represented by a graph G_ in which the vertices corre-
spond to the vertex atoms of the polygon or deltahedron, or equivalently their unique
internal orbitals, and the edges represent pairs of overlapping unique internal orbitals.
The relative energies of the additional molecular orbitals arising from such overlap of
the unique internal orbitals are determined from the eigenvalues of the adjacency matrix
A_of the graph G_using f3 or, more specifically, 3, as the energy unit (egs. (4a), (5),
and (6)). In the case of the two-dimensional aromatic system benzene, the graph Gc is
the C cyclic graph (the 1-skeleton [29] of the hexagon) which has three positive and
three negative eigenvalues corresponding to the three z-bonding and three m*-anti-
bonding orbitals, respectively. The spectra of the cyclic graphs C all have odd numbers
of positive eigenvalues [30], leading to the familiar 44 + 2 (k = integer) m-electrons [31]
for planar aromatic hydrocarbons.

A critical question is the nature of the core bonding graph G_ for the deltahedral
boranes B, Hz“ The two limiting possibilities for G _ are the complete graph K and the
deltahedral graph D , and the corresponding core bondmg topologies can be called the
complete and deltahedral topologies, respectively. In the complete graph K , each
vertex has an edge going to every other vertex, leading to a total of n(n -2
edges [32]. For any value of n, the complete graph K _has only one positive eigenvalue,
namely, n — 1, and n — 1 negative eigenvalues, namely, —1 each. The deltahedral graph
Dn is identical to the 1-skeleton [29] of the deltahedron. Thus, two vertices of Dn are
connected by an edge if, and only if, the corresponding vertices of the deltahedron are
connected by an edge. The graph D for the deltahedra of interest with seven or more
vertices all have at least three positive eigenvalues. However, in all cases there is a
unique positive eigenvalue which is much more positive than any other of the positive
eigenvalues. This unique positive eigenvalue, conveniently called the principal eigen-
value, arises from the fully symmetric pathway of the symmetry factoring scheme [33]
used to determine the eigenvalues of D , namely, the pathway using Gg components at
branches from twofold symmetry operations and G, components at branches from
threefold symmetry operations. The molecular orbital corresponding to the principal
eigenvalue of G_may be called the principal core orbital. Since deltahedral boranes of
the stmchlometry B IvI2 have 2n + 2 skeletal electrons, of which 2n are used for the
surface bonding, there are only two skeletal electrons available for core bonding,
corresponding to a single core bonding molecular orbital and a single positive eigen-
value for GC. Thus, deltahedral boranes are three-dimensional aromatic systems with
4k + 2 = 2 core bonding electrons where k = 0, analogous to the 4k + 2 z-electrons

where k = 0 (C,H}), 1 (CH;, CH,, C,H}) or 2 (C,H2") for planar two-dimensional
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aromatic systems. Furthermore, only if G_ is taken to be the corresponding complete
graph K will the simple model given above for globally delocalized deltahedra give the
correct number of skeletal electrons in all cases, namely, 2n + 2 skeletal electrons for
6 < n < 12. Such a model with complete core bonding topology is the basis for the graph-
theory derived model for the chemical bonding topology of deltahedral boranes and
metal clusters discussed in previous papers [8—11]. However, deltahedral core bonding
topology can also account for the observed 2n+ 2 skeletal electrons in the BnHj‘
~ deltahedral boranes if there is a mechanism for raising the energies of all the core
molecular orbitals other than the principal core orbital to antibonding energy levels.
This possibility was already indicated in the original graph-theoretical analysis [17] of
the 3n Hoffmann—Lipscomb LCAO-MO extended Hiickel computations [18] on icosa-
hedral Blef;, which showed that four core orbitals would be bonding orbitals except
for core—surface orbital mixing which raises the energies of three of these four core
orbitals to antibonding levels, leaving only the principal core orbital as a bonding core
orbital.

The distinction between complete (K ) and deltahedral (D)) core bonding
topology is most clearly explained for octahedral B HZ“ Among the ﬁfteen pairs of six
vertices in an octahedron (D, graph), twelve pairs correspond to edges of the octahedron
(cis interactions), and the remaining three pairs correspond to antipodal vertices related
by the inversion center and not connected by an edge (trans interactions). However, all
of the fifteen pairs of six vertices in a complete K, graph correspond to edges of equal
weight. In an octahedral array of six points, a parameter ¢ can be defined as the ratio of
the ¢trans interactions to the cis interactions. This parameter ¢ is O for the pure octahedral
topology (D,) and 1 for pure complete topology (K,). Values of ¢ between 0 and 1 can
be used to measure gradations of topologies between D, and K, corresponding to the
weighting of edges representing trans interactions relative to those representing cis
interactions in the underlying graph. In group-theoretical terms, pure complete core
bonding topology (i.e. t = 1) uses the symmetric group [34] S, with 720 operations (i.e.
the automorphism group of the complete graph K ) rather than its subgroup G, with 48
operations (i.e. the point group of the octahedron) to represent the symmetry of the core
bonding manifold in B HZ' The actual O, rather than S, symmetry of these systems will
result in partial removal of the ﬁvefold degeneracy of the core antibonding orbitals
implied by the complete core bonding topology. The value of the parameter ¢ corre-
sponding to a given computation on octahedral B H"’” can be estimated from the energy
parameters computed for the A, g and Eg core molecular orbitals {17,19]. The core
bonding topology corresponding to a given computation on B H"" can thus be deter-
mined.

These ideas concerning the skeletal bonding in deltahedral borane anions can be
related to tensor surface harmonic theory as developed by Stone [35] and elaborated by
Mingos and Johnston [36). The n core orbitals may be described by the scalar spherical
harmonics, which for deltahedra having n vertices correspond successively to the single
S, the three PP, the five D°, the seven FC orbitals, etc., of increasing energy and
nodality. The surface orbitals may be described by the vector spherical harmonics,



76 R.B. King, Three-dimensional aromaticity

which for deltahedra having n vertices correspond successively to three P”, five D”,
seven F” bonding/antibonding orbital pairs, etc., of increasing energy and nodality. This
relates to the following aspects of the graph-theory derived model for the skeletal
bonding in deltahedral boranes:

(1) The principal core orbital corresponds to the S" orbital in tensor surface
harmonic theory. Since there are no S Tor S* surface orbitals, the principal core
orbital (S") cannot mix with any of the surface orbitals, in accord with ideas
discussed above. Thus, the principal core orbital cannot be made antibonding
through core—surface mixing.

(2) The three core orbitals of lowest energy other than the principal core orbital (S")
correspond to P" orbitals in tensor surface harmonic theory. These orbltals
correspond to the three most positive eigenvalues other than the principal eigen-
value of the corresponding deltahedra. The P° core orbitals mix with the P:
surface orbitals so that the P" core orbitals become antibonding with corre-
sponding lowering of the energles of the P” surface orbitals below the energies
of the other surface bonding orbitals. Thus, in computations of molecular orbital
energies of the B, H2' deltahedral borane anions, the lowest lying molecular
orbital is the pnnmpal core orbital (S") and the next lowest lying orbitals
correspond to the three P” surface orbxtals which will be degenerate in the case
of octahedral B,H2~ and icosahedral B ,HZ, but not in the case of the less
symmetrical deltahedra

In order to relate a given computation on a deltahedral borane to topological
models for its chemical bonding, all of its molecular orbital energy parameters are
required, including those for the unfilled antibonding (virtual) orbitals, thereby pre-
cluding such an analysis for many of the published computations [37-41]. From such
information, the first step is to calculate @, the energy "zero point” of egs. (4a) and (5).
The value of «a corresponding to a given complete set of molecular orbital energy
parameters is best determined by taking the degeneracy weighted average of the energy
parameters for all of the molecular orbitals, as indicated in eq. (7). Next, the surface
energy unit B can be estimated as the degeneracy weighted average distance of the pure
surface orbitals from the energy zero point . At this stage, sampling error is unavoid-
ably introduced since the energy parameters of only the pure surface orbitals can be
included in this average. The other surface orbitals must be excluded from this average
since their energy parameters are distorted by substantial mixing with the core and
external orbitals belonging to the same irreducible representations. The sign of the
resulting [3 is the same as the sign of the bonding pure surface orbitals.

Further analysis of the computed molecular orbital energy parameters either
requires some special symmetry such as that found in octahedral B HZ‘ or icosahedral
B12H122‘, or some further assumptions conceming the chemical bonding topology for the
less symmetrical deltahedra. Only the former situation is discussed in this paper. In the
cases of the systems with special symmetry, the core energy units ﬁc and the nonadjacent
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atom unique internal orbital interactions (i.e. f in B;HZ™ and m in B ;HZ) can be esti-
mated from the energy parameters of the principal core orbital and the other core orbital
not mixing with surface orbitals. This method is subject to possible errors arising from
core—external orbital interactions. However, a comparison of the Hoffmann—Lipscomb
"3n", "4n", and "5n" computations [18] suggests that these core—external interactions

are not large enough to cause serious errors.

3. Methods

Consider an octahedrally weighted K, complete graph having 12 edges of unit
weight corresponding to the octahedron edges (cis interactions) and the remaining 3
edges of weight ¢ corresponding to the three octahedron antipodal vertex pairs. The
spectrum of this graph can be determined by symmetry factoring [33] using a threefold
axis (fig. 2). The symmetric branch (A in fig. 2) gives the eigenvalue 4 + ¢ correspon-
ding to the Alg principal core molecular orbital, as well as one of the —t eigenvalues of

Octahedrally C3 E

weighted K¢ * 2 -
. Eq2-2+7,~2+?
12 edge weights +1 A
3 edge weights+ ¢ Tigi-t-t
—
A‘g: 4+t
Tyyi=t

Fig. 2. Symmetry factoring scheme for an octahedrally weighted K,
graph using a threefold axis (C,) leading to A and E branches [33].

the triply degenerate 7, core molecular orbital. The doubly degenerate E branch
(fig. 2) gives the other two —t eigenvalues of the triply degenerate T, core molecular
orbital, as well as the two -2+ ¢ eigenvalues of the doubly degenerate E core
molecular orbital. Note that any positive value of ¢ (up to +2) is sufficient to lead to only
one positive eigenvalue, namely the 4 + ¢ eigenvalue of the A, orbital, and five negative
eigenvalues, namely the —¢ eigenvalues of the triply degenerate 7, orbitals and
the —2 + ¢ eigenvalues of the doubly degenerate E orbital. This indicates that any
positive trans interaction in an octahedron gives the same distribution of bonding and
antibonding orbitals, namely 1 and 5, respectively, as an unweighted (i.e. 1 = 1) K,
graph. Thus, for octahedral boranes the numbers of bonding and antibonding orbitals are
insensitive to the value taken for ¢. Note also that setting ¢ = 0 leads to the spectrum of
the octahedron (+4, 0, 0, 0, -2, -2) which is the D, graph, whereas setting ¢ = 1 leads
to the spectrum of the K, complete graph (+5, -1, -1, -1, -1, -1).

This symmetry factoring procedure indicates that in the absence of core—surface
and core—external orbital mixing, the energy parameters of the octahedral core orbitals
in B HZ" relative to ¢ are determined by the equations



78 R.B. King, Three-dimensional aromaticity

EA).=@+np, (8a)
E(T,), = B, (8b)
EE), =(-2+0f, (8¢c)

where BC is the core energy unit and ¢ is the ratio of trans to cis interactions. The core
octahedral orbitals not subject to core—surface mixing are the A, principal core orbital
and the doubly degenerate E_antibonding core orbitals. Furthermore, a comparison of
the molecular orbital energy parameters from the 35, 4n, and 5n computations on B 6H§“
by Hoffmann and Lipscomb [18] suggests that core—external orbital mixing, unlike
core—surface orbital mixing, is relatively minor in this system. Substitution of the
energy parameters of the Al core orbital, readily recognized as by far the most strongly
bonding molecular orbital, and an antibonding £ orbital into egs. (8a) and (8c),

respectively, leads to two equations which can be solved for the two unknowns ¢ and
ﬁc. In cases where the two sets of antibonding Eg orbitals differ significantly in energy,
only one of the two possible choices, namely the less antibonding E_orbital, was found
to give a physically reasonable positive value of  between 0 and 1. The E_orbital giving
such a positive value of ¢ was therefore chosen to be the core orbital, leaving the more
strongly antibonding E_ orbital to be an antibonding external orbital. The values of ¢ and
B so obtained by solvfng €gs. (8a) and (8c) can be substituted into eq. (8b) to give a
hypothetical value for E(T,,), in the absence of core—surface mixing. Comparison of
this value with the computed value for the T, core orbital gives a parameter AE(T, ),
which can be taken to measure the extent of core—surface mixing.

Related methods can be used to compare the computed octahedral surface orbital
energy parameters with those arising from the graph-theory derived method. In this
case, the ideal surface orbital energy parameters for the octahedron based on S, sym-
metry are determined by the equations

E(T,) = E(T,,), = B, )
E(T,) = E(T,)) = B, (9b)

where Bs is the surface energy unit. Reduction of the effective symmetry from the S
automorphism group of the K, graph to the actual O, point group of a regular octa-
hedron will make E(T,,) no longer equal to E(Tg) and E(T, ) no longer equal to

E(T,),. On the basis of egs. (9a) and (9b), the following appropnately weighted mean
of the energy parameters of the pure surface orbitals T T, and T can be used to
determine f3:

B = 12[-172(E(T,,) + E(T,))) + E(T,)). (10)
The energy parameter E(T,,), is not included in this mean because of the uncertainty

in the core—surface mixing parameter AE(T, ), obtained as outlined above, which must
be subtracted from the value of E(T,), obtamed from the actual computation.
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A similar approach can be used for the treatment of icosahedral boranes. Thus,
consider an icosahedrally weighted X, complete graph having 30 edges of unit weight
corresponding to the icosahedron edges, 30 edges of weight m corresponding to the
meta interaction of nonadjacent, nonantipodal vertex pairs, and 6 edges of weight p
corresponding to the para interaction of the 6 icosahedron antipodal pairs. The spectrum
of this graph can be determined by symmetry factoring [33] using first a threefold axis
and then a twofold axis (fig. 3). The fully symmetric branch (AG) gives the eigenvalue

icosahedrally C3 @. C:
weighted K, ¢ o
9 12 l T,u :v/Bll-m)-p

30 edge weights+1 A Tay -VBl1-m)-p

30 edge weights+m
(both appecr twice)
<[> 260 )

6 edge weights+p

Hg:-l-m-’-p
(four times)
Cz
y&
Ag:5+5m+p T‘u:«/g(l-m)-p
Hgi-1-m+p Tayi =B lkml-p

Fig. 3. Symmetry factoring scheme for an icosahedrally weighted X,
graph using first a threefold axis (C,) leading to A and E branches,
followed by a twofold axis (C,) leading to G and U branches [33].

5+ 5m + p corresponding to the A_ principal core molecular orbital, as well as one of
the -1 -m+ p eigenvalues of the quintuply degenerate H_core molecular orbitals.
The remaining four —1-m+p eigenvalues of the quintuply degenerate H_core
molecular orbitals arise from the two isolated vertices of the doubly degenerate EG
branch. The AU branch and the doubly degenerate EU branch generate the same
quadratic equation, whose roots give the eigenvalues of the triply degenerate 7, and T,
core molecular orbitals. Note that the 7, core molecular orbital has a posmve elgen-
value unless p > V5(1 — m). Thus, thh most likely values of the edge weights m and
p. the icosahedrally weighted K, graph (fig. 3) has four positive eigenvalues, namely
the Ag and triply degenerate T orbltals rather than only the single positive eigenvalue
characteristic of the unwelghted K, graph. Note also that setting m = 0 and p = 0 gives
the spectrum of the icosahedron (+5 +V5 three times, —1 five times, —VS5 three times),
whereas setting m = 1 and p = 1 gives the spectrum of the K|, complete graph (+11, -1
eleven times).

This symmetry factoring procedure indicates that in the absence of core—surface
and core—external orbital mixing, the energy parameters of the icosahedral core orbitals

in B, H?; relative to o are determined by the equations
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E@A,) = (S +5m+p)B, (11a)
E(T) = N5 -m)-plB, (11b)
EH) = (-1-m+p)B, (11c)
E(T,) =[-V5(1-m)-plB., (114d)

where ﬂc is the core orbital energy unit, m is the ratio of the meta (nonadjacent,
nonantipodal) to ortho (adjacent) interactions, and p is the ratio of para (antipodal) to
ortho interactions. The only core icosahedral orbitals not subject to core—surface mixing
are the A principal core orbitals and the triply degenerate T, , antibonding core orbitals.
This leaves only the two egs. (1'1a) and (114d) for the energy parameters of the A and
T, core orbitals, respectively, to determine the three unknowns m, p, and 3. The system
is therefore underdetermined by one relationship so that an additional relationship
between m, p, and/or ﬁc must be assumed before the necessary parameters can be
extracted from the computed energy parameters. The arbitrary auxiliary assumption [19]

m=2p (12)

is therefore introduced, allowing the following two equations for Bc and m to be derived
from egs. (11a), (11d), and (12):

E(Alg)c - (3 168)E(T2u )c

Be= 12.083 ’ (13a)
m=2p=%(§—%‘—533—5). (13b)

Analysis of the 3n computations by Hoffmann and Lipscomb [18] suggests that the
values of m and Bc obtained from a given set of computed molecular orbital energy
parameters are relatively insensitive to the assumed relationship between m and p in the
range 0 < p < m. After determining m and J_ by egs. (13a) and (13b), eqgs. (11b) and
(11c) can be used to calculate hypothetical values for E(T ), and E(Hg) in the absence
of core—surface mixing. Comparison of these values thh the computed energy para-
meters for the T, and Hg core orbitals gives parameters AE (T)) and AE(H ) measuring
the extent of core —surface mixing.

An approach similar to that used for the octahedral B Hg' can be used to estimate
the surface orbital energy unit Bs for the icosahedral B H , corresponding to a given set
of computed molecular orbital energy parameters. The ideal surface orbital energy

parameters for the icosahedron based on 5, symmetry are determined by the equations
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BG,) = B, = ET,), = 5, 148
E(Gg) = E(Hu) = E(Tlg) = —ﬁs' (14b)

Reduction of the effective symmetry from the 5, automorphism group of the K, graph
to the actual [ point group of the regular icosahedron destroys the equalities between
the molecular orbital energy parameters in egs. (14a) and (14b). On the basis of these
equations, the following degeneracy weighted mean of the energy parameters of the
pure bonding surface orbital G, of degeneracy 4 and the pure antibonding surface
orbitals Gx’ H , and Tlg of degeneracies 4, 5, and 3, respectively, can be used to
determine 3

B, = 1R[-112(4E(G)) + SE(H,) + 3E(T, ) + E(G)]. (15)

As in the case of the analogous calculation for the B6H§“ octahedron, the energy
parameters E(Hg)S and E(Il"m)s are not included in the mean owing to uncertainties in
estimating the core—surface mixing corrections AE(H ) and AE(T) ).

These methods have been used to analyze the molecular orbital energy
parameters arising from several different types of computations on octahedral B 6H§“
(table 1) and icosahedral B12H125 (table 2). The simplest such computations are the
Hoffmann-Lipscomb LCAO-MO extended Hiickel computations, which have been
perfomed using only the 37 internal orbitals on the n vertex boron atoms (HL3#), using
only the 4n boron valence orbitals (HL4n), and using the full 5n valence orbital set
consisting of 4 orbitals (sp?) on each boron atom and the 1s orbital on each hydrogen
atom. The molecular orbital energy parameters from these computations are given in
dimensionless quantities (& — Ek)/(K - Ek), where K is the proportionality constant
between resonance integral  and overlap S: ,Bm = KS_ . Comparison of these three sets
of computations allows the examination of the effects of core—external orbital mixing
since the external and hydrogen orbitals are deleted completely from the HL3 n basis set.
The Armstrong—Perkins—Stewart self-consistent field molecular orbital (SCFMO)
computations (APS), which give molecular orbital energy parameters in electron volts,
introduce iterative methods [42] and use numerical integration of the Slater orbitals of
the standard type

X, =N, ’eXp(—a@/ao)y,,m(ﬂy, ,)- (16)
The Gimarc—-Dai SCF MO Gaussian 82 computations with an STO-3G basis set
represent an example of a simple ab initio computation where the Slater orbitals (e.g.
eq. (16)) are approximated by a sum of Gaussians of the form exp(- ar?) to facilitate
evaluation of the necessary integrals [43]. The Gimarc—Dai computations give molecu-
lar orbital energy parameters in Hartrees. The values of @, ., B./B,. B, t, and AE(T, )
obtained from the analysis of the molecular orbital energy parameters from these
computations for octahedral B GH? are listed in table 1. Similarly, the values of
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Table 1
Analysis of computations on octahedral B;HZ"

Hoffmann-Lipscomb Armstrong~Perkins—Stewart  SCF MO ab initio

extended Hilckel self-consistent MO Gaussian 82
computations computations* computations®
3n 4n 5n
Core orbitals
A18 2.969 3.066 3.210 -503 -1.126
T, -0829 -0.831 -0.844 138 0.596
(T,, adjusted) (-0.401) (-0434) (-0478) (1.5) (0.062)
Es -0.884  -0.887 -0.888 13.6 0.470
Surface orbiials
T, 1.023 1.130 1433 ~26.1 -0.848
(T}, adjusted) (0.595) (0.733) (1.067) (-18.6) (-0.314)
T, . 0.493 0.493 0.493 -11.1 ~0.486
T, -0416 -0416 -0416 9.8 0.198
Tll -0.671  -0.671 -0.671 117 0.548
Derived parameters
a 0 0 0 72 0.675
B 0.642 0.658 0.683 -10.7 -0.266
B, 0527 0527 0.527 ~-8.1 ~0.429
BB, 1.218 1.249 1.296 132 0.620
t 0.625 0.660 0.700 0.700 0.233
AE(T ) 0.428 0397 0.366 -6.3 -0.534

*Relative to « as given.

o B, B./B,. B, m, AE(T, ) and AE(T, ) obtained for icosahedral B HZ are listed
in table 2.

4, Conclusions

The information summarized in tables 1 and 2 indicates the following features of

the various computations on octahedral B;H;~ and icosahedral B ,H?;:

(1) The Hoffmann—Lipscomb LCAO-MO extended Hiickel computations (HL5n)
[18] and the Ammstrong—Perkins—Stewart self-consistent molecular orbital com-
putations (APS) [20], both of which are derived directly from Slater-type orbitals,
givezvery similar values of B /f, and ¢, particularly in the case of octahedral
BHZ.
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Table 2
Analysis of computations on icosahedral Ble}z;
Hoffmann-Lipscomb Armstrong—Perkins—Stewart SCF MO ab initio
extended Hickel self-consistent MO Gaussian 82
computations computations* computations*
3n 4n 5n
Core orbitals
Ala 4.163 4293 4.469 -70.6 -1.184
1. -0.7713  -0.827 -0.860 135 0.407
(T, adjusted) (0.654) (0.642)  (0.620) (-8.8) (~0.441)
Hs ~-0856 -0.862  -0.873 137 0511
(Hg adjusted) (-0.693) (-0.711) (~0.734) (11.5) 0.227)
T, -0.886¢ -0.886 -0.887 13.1 0.459
Surface orbitals
T, 1907 1990 2370 -40.6 -0.998
(T, adjusted) (0.480) (0.521)  (0.890) (~18.3) (-0.150)
Hs 0.984 1.107 1358 -21.7 -0.810
(Hs adjusted) (0.815) (0.956) (1.219) (-19.5) (-0.526)
G, 0518 0.518 0518 -4.7 -0.526
Gg -0471  -0471 -0471 9.6 0.156
H, -0.678 -0.678 -0.678 113 0.445
Tls -0.782  -0.782 -0.782 11.8 0.682
Derived parameters
o 0 0 0 5.1 0.547
B, 0.577 0.588 0.602 -9.3 -0.218
B, 0577 0577 0.577 -78 -0.467
B.1B, 1.000 1.019 1.043 1.192 0.466
m(= 2p) 0.402 0418 0.441 0471 0.078
P 0.201 0.209 0.220 0.235 0.039
AET ) 1429 1.469 1.480 -22.3 -0.848
AE(HB) 0.163 0.151 0.139 -2.2 -0.284

*Relative to « as given.

(2) The SCF MO ab initio Gaussian 82 computations (GD), which approximate
Slater-type orbitals with a sum of Gaussians, give much lower values of both
B./B, and the nonadjacent core orbital interaction parameters (¢ for B6H§‘ and m
for Blef;) than the HL5n and APS computations using Slater orbitals. This
indicates that the representation of Slater-type orbitals by a sum of Gaussians, as
is typical in modern ab initio computations, leads to significantly weaker
apparent core bonding, approximated more closely by deltahedral (D)) rather
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than complete (K ) topology, probably because Gaussian functions of the type
exp(—ar?) fall off more rapidly at longer distances than Slater functions of the
type exp(-{r).

The T, orbitals which, if pure, would be non-bonding in octahedral (D,) core
topology for B Hz‘ and bonding in icosahedral (D,,) core topology for B 2Hfz",
become anubondmg through strong core—surface mixing [17,19,21]. Because of
this, the simpler graph-theory derived model [8—11], using complete core bond-
ing topology where G_ = K , gives the correct numbers of bonding and anti-
bonding orbitals even though the complete graph K_ is a poor approximation of
the actual G_ corresponding to the computations usmg Gaussian orbitals.
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